Asignatura: Validez
Universidad Complutense de Madrid
11 marzo, 2025
Rodriguez, Reise, y Haviland (2016) indica 3 aspectos interpretativos relevantes en los índices bifactor:
¿Los puntajes totales reflejan variación en una sola variable latente? (Indicadores: \(\omega\), \(\omega_H\)); y, de forma relacionada, ¿los puntajes de subescala reflejan varianza confiable independiente del factor general? (Indicadores: \(\omega_S\), \(\omega_{HS}\))
¿Pueden los ítems usarse para especificar variables latentes en un contexto SEM? Indicadores: FD, H
¿Son las medidas esencialmente unidimensionales y, por lo tanto, deben especificarse como una única variable latente en SEM?
Indicadores: ECV, PUC
En la TCT, la fiabilidad de una medida se define como la proporción de la varianza observada que se debe a la varianza verdadera, excluyendo el error de medición. Se parte de la ecuación fundamental:
\[ O = V + e \]
Donde:
Dado que la varianza de una suma de variables es:
\[ \text{Var}(O) = \text{Var}(V) + \text{Var}(e) + 2\text{Cov}(V, e) \]
Y asumiendo en la TCT que el error es aleatorio y no está correlacionado con la puntuación verdadera (\(\text{Cov}(V, e) = 0\)), tenemos:
\[ \text{Var}(O) = \text{Var}(V) + \text{Var}(e) \]
Por lo que la fiabilidad (\(\rho\)) se expresa como:
\[ \rho = \frac{\text{Var}(V)}{\text{Var}(O)} = \frac{\text{Var}(V)}{\text{Var}(V) + \text{Var}(E)} \]
Es decir, la proporción de la varianza de la puntuación observada que es atribuible a la varianza verdadera.
En el análisis factorial, se puede hacer la asunción que la carga factorial al cuadrado (\(\lambda^2 = h^2\)) puede ser entendida como la \(\text{Var}(V)\); mientras que la unicidad (\(1 - \lambda^2 = 1 - h^2 = u\)) puede ser considerado como la \(\text{Var}(E)\).
Uno de los más reportados sería el \(\omega\), que en un modelo bifactor, representa la varianza común atribuido a la suma del factor general y los factores específicos. Un valor alto, refleja multidimensionalidad.
\[ \omega = \frac{ \Bigl(\sum \lambda_{\text{gen}}\Bigr)^2 + \sum_{k=1}^K \Bigl(\sum \lambda_{\text{grp}_k}\Bigr)^2 }{ \Bigl(\sum \lambda_{\text{gen}}\Bigr)^2 + \sum_{k=1}^K \Bigl(\sum \lambda_{\text{grp}_k}\Bigr)^2 + \sum \bigl(1 - h^2\bigr) } \]
En tanto, el \(\omega_H\) estudia esta varianza común pero solo la parte que se encuentra atribuída al Factor General, eliminando la parte de los factores específicos.
\[ \omega_H = \frac{ \Bigl(\sum \lambda_{\text{gen}}\Bigr)^2 }{ \Bigl(\sum \lambda_{\text{gen}}\Bigr)^2 + \sum_{k=1}^K \Bigl(\sum \lambda_{\text{grp}_k}\Bigr)^2 + \sum \bigl(1 - h^2\bigr) } \]
Estima la fiabilidad de la sub-escala contando la varianza común del factor general y del factor en específico. Habitualmente esto, podría ser alto y sería un peligro evaluarlo así.
\[ \omega_S \;=\; \frac{ \Bigl(\sum \lambda_{\text{gen}}\Bigr)^2 \;+\; \Bigl(\sum \lambda_{k=1}\Bigr)^2 }{ \Bigl(\sum \lambda_{\text{gen}}\Bigr)^2 \;+\; \Bigl(\sum \lambda_{k=1}\Bigr)^2 \;+\; \sum \bigl(1 - h^2\bigr) } \]
Este omega jerárquico evaluado en la sub-escala (\(\omega_{HS}\)) , indica que tanto de la varianza común del factor específico es únicamente del factor específico. En un modelo bifactor que se sostiene, este indicador debería ser bajo.
\[ \omega_{HS} = \frac{ \Bigl(\sum \lambda_{\text{grp}_k}\Bigr)^2 }{ \Bigl(\sum \lambda_{\text{gen}}\Bigr)^2 + \sum_{k=1}^K \Bigl(\sum \lambda_{\text{grp}_k}\Bigr)^2 + \sum \bigl(1 - h^2\bigr) } \]
Instrumentos modelados de forma unifactorial pueden presentar una estimación de fiabilidad \(\omega\) muy alta, a pesar de que ese único factor podría tener un ajuste cuestionable o no estar representando realmente un único factor.
De forma similar sucederían en los modelos multifactoriales, en los que las estimaciones de sus factores (\(\omega_s\)) presenten valores altos, a pesar de que un gran % de esa \(\psi_{S_k}\) realmente sean exactamente los mismos en los otros factores (un factor general no modelado).
Los modelos bifactor pueden contemplar FE’s que no contengan \(\psi_{S_k}\) suficiente para ser interpretados individualmente (\(\omega_{HS}\) bajo con respecto a \(\omega_s\)), pero que a la vez contengan suficiente \(\psi_{S_k}\) para tener que modelarlos y no prescindir de su especificación factorial.
Para evaluar si los ítems son adecuados para definir variables latentes en un modelo SEM, se utilizan:
Para evaluar si los ítems son adecuados para definir variables latentes en un modelo SEM, se utilizan:
Para determinar si la medida puede tratarse como esencialmente unidimensional, se utilizan:
Para determinar si la medida puede tratarse como esencialmente unidimensional, se utilizan:
Con una muestra suficiente, 4 factores con 6 ítems en cada factor y un buen comportamiento bifactorial.
lavaan 0.6-19 ended normally after 39 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 54
Number of observations 1000
Model Test User Model:
Standard Scaled
Test Statistic 259.862 261.970
Degrees of freedom 246 246
P-value (Chi-square) 0.260 0.231
Scaling correction factor 0.992
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 25410.561 25585.788
Degrees of freedom 276 276
P-value 0.000 0.000
Scaling correction factor 0.993
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.999 0.999
Tucker-Lewis Index (TLI) 0.999 0.999
Robust Comparative Fit Index (CFI) 0.999
Robust Tucker-Lewis Index (TLI) 0.999
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -21424.967 -21424.967
Scaling correction factor 0.994
for the MLR correction
Loglikelihood unrestricted model (H1) -21295.036 -21295.036
Scaling correction factor 0.992
for the MLR correction
Akaike (AIC) 42957.934 42957.934
Bayesian (BIC) 43222.953 43222.953
Sample-size adjusted Bayesian (SABIC) 43051.446 43051.446
Root Mean Square Error of Approximation:
RMSEA 0.008 0.008
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.015 0.016
P-value H_0: RMSEA <= 0.050 1.000 1.000
P-value H_0: RMSEA >= 0.080 0.000 0.000
Robust RMSEA 0.008
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.015
P-value H_0: Robust RMSEA <= 0.050 1.000
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.012 0.012
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
F1 =~
item_1_1 0.848 0.026 32.548 0.000 0.848 0.838
item_1_2 0.893 0.028 31.793 0.000 0.893 0.841
item_1_3 0.893 0.024 36.715 0.000 0.893 0.872
item_1_4 0.829 0.027 31.033 0.000 0.829 0.817
item_1_5 0.873 0.026 33.745 0.000 0.873 0.879
item_1_6 0.854 0.025 34.632 0.000 0.854 0.860
F2 =~
item_2_1 0.841 0.024 35.553 0.000 0.841 0.868
item_2_2 0.845 0.025 34.226 0.000 0.845 0.851
item_2_3 0.856 0.024 36.035 0.000 0.856 0.871
item_2_4 0.814 0.026 31.874 0.000 0.814 0.828
item_2_5 0.870 0.024 36.584 0.000 0.870 0.888
item_2_6 0.879 0.026 33.558 0.000 0.879 0.876
F3 =~
item_3_1 0.821 0.025 32.507 0.000 0.821 0.833
item_3_2 0.852 0.026 32.552 0.000 0.852 0.840
item_3_3 0.855 0.024 35.805 0.000 0.855 0.875
item_3_4 0.827 0.025 32.456 0.000 0.827 0.843
item_3_5 0.868 0.025 34.592 0.000 0.868 0.874
item_3_6 0.905 0.023 38.810 0.000 0.905 0.902
F4 =~
item_4_1 0.890 0.025 35.428 0.000 0.890 0.895
item_4_2 0.857 0.025 33.974 0.000 0.857 0.869
item_4_3 0.852 0.026 32.257 0.000 0.852 0.846
item_4_4 0.834 0.024 34.394 0.000 0.834 0.850
item_4_5 0.890 0.025 36.223 0.000 0.890 0.888
item_4_6 0.884 0.025 35.529 0.000 0.884 0.875
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
F1 ~~
F2 0.879 0.009 93.443 0.000 0.879 0.879
F3 0.877 0.009 93.030 0.000 0.877 0.877
F4 0.870 0.009 93.390 0.000 0.870 0.870
F2 ~~
F3 0.873 0.009 96.859 0.000 0.873 0.873
F4 0.866 0.010 90.883 0.000 0.866 0.866
F3 ~~
F4 0.882 0.009 94.835 0.000 0.882 0.882
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.item_1_1 0.305 0.015 20.327 0.000 0.305 0.298
.item_1_2 0.331 0.017 19.761 0.000 0.331 0.293
.item_1_3 0.251 0.013 19.634 0.000 0.251 0.239
.item_1_4 0.343 0.017 20.177 0.000 0.343 0.333
.item_1_5 0.224 0.012 18.348 0.000 0.224 0.227
.item_1_6 0.257 0.014 18.874 0.000 0.257 0.261
.item_2_1 0.231 0.011 21.103 0.000 0.231 0.246
.item_2_2 0.272 0.014 18.835 0.000 0.272 0.276
.item_2_3 0.234 0.012 19.703 0.000 0.234 0.242
.item_2_4 0.304 0.016 19.223 0.000 0.304 0.314
.item_2_5 0.204 0.011 19.309 0.000 0.204 0.212
.item_2_6 0.233 0.012 19.201 0.000 0.233 0.232
.item_3_1 0.296 0.016 18.547 0.000 0.296 0.305
.item_3_2 0.303 0.015 20.201 0.000 0.303 0.295
.item_3_3 0.224 0.012 18.394 0.000 0.224 0.235
.item_3_4 0.280 0.014 20.203 0.000 0.280 0.290
.item_3_5 0.234 0.012 19.969 0.000 0.234 0.237
.item_3_6 0.188 0.011 17.091 0.000 0.188 0.186
.item_4_1 0.196 0.011 18.287 0.000 0.196 0.198
.item_4_2 0.238 0.012 20.650 0.000 0.238 0.245
.item_4_3 0.289 0.015 19.303 0.000 0.289 0.285
.item_4_4 0.268 0.013 20.226 0.000 0.268 0.278
.item_4_5 0.213 0.012 18.443 0.000 0.213 0.212
.item_4_6 0.239 0.012 19.440 0.000 0.239 0.234
F1 1.000 1.000 1.000
F2 1.000 1.000 1.000
F3 1.000 1.000 1.000
F4 1.000 1.000 1.000
lavaan 0.6-19 ended normally after 35 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 72
Number of observations 1000
Model Test User Model:
Standard Scaled
Test Statistic 218.905 221.095
Degrees of freedom 228 228
P-value (Chi-square) 0.656 0.616
Scaling correction factor 0.990
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 25410.561 25585.788
Degrees of freedom 276 276
P-value 0.000 0.000
Scaling correction factor 0.993
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.000 1.000
Robust Comparative Fit Index (CFI) 1.000
Robust Tucker-Lewis Index (TLI) 1.000
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -21404.488 -21404.488
Scaling correction factor 1.000
for the MLR correction
Loglikelihood unrestricted model (H1) -21295.036 -21295.036
Scaling correction factor 0.992
for the MLR correction
Akaike (AIC) 42952.977 42952.977
Bayesian (BIC) 43306.335 43306.335
Sample-size adjusted Bayesian (SABIC) 43077.659 43077.659
Root Mean Square Error of Approximation:
RMSEA 0.000 0.000
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.011 0.012
P-value H_0: RMSEA <= 0.050 1.000 1.000
P-value H_0: RMSEA >= 0.080 0.000 0.000
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.012
P-value H_0: Robust RMSEA <= 0.050 1.000
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.009 0.009
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
F =~
item_1_1 0.791 0.027 29.268 0.000 0.791 0.781
item_1_2 0.827 0.029 28.268 0.000 0.827 0.778
item_1_3 0.849 0.025 33.312 0.000 0.849 0.829
item_1_4 0.763 0.028 26.907 0.000 0.763 0.752
item_1_5 0.827 0.027 30.849 0.000 0.827 0.832
item_1_6 0.794 0.026 30.450 0.000 0.794 0.799
item_2_1 0.786 0.025 31.463 0.000 0.786 0.811
item_2_2 0.786 0.026 30.003 0.000 0.786 0.791
item_2_3 0.797 0.025 31.870 0.000 0.797 0.811
item_2_4 0.759 0.027 28.541 0.000 0.759 0.772
item_2_5 0.820 0.025 32.840 0.000 0.820 0.837
item_2_6 0.812 0.027 29.966 0.000 0.812 0.809
item_3_1 0.778 0.027 29.267 0.000 0.778 0.790
item_3_2 0.808 0.027 30.050 0.000 0.808 0.796
item_3_3 0.798 0.025 31.967 0.000 0.798 0.817
item_3_4 0.778 0.027 29.061 0.000 0.778 0.793
item_3_5 0.812 0.026 30.848 0.000 0.812 0.817
item_3_6 0.848 0.025 33.802 0.000 0.848 0.844
item_4_1 0.834 0.027 31.450 0.000 0.834 0.839
item_4_2 0.823 0.026 31.840 0.000 0.823 0.834
item_4_3 0.785 0.028 28.478 0.000 0.785 0.779
item_4_4 0.773 0.025 30.441 0.000 0.773 0.787
item_4_5 0.820 0.026 31.612 0.000 0.820 0.818
item_4_6 0.820 0.026 30.989 0.000 0.820 0.812
S1 =~
item_1_1 0.311 0.028 10.916 0.000 0.311 0.307
item_1_2 0.352 0.029 12.015 0.000 0.352 0.331
item_1_3 0.266 0.025 10.652 0.000 0.266 0.259
item_1_4 0.341 0.029 11.656 0.000 0.341 0.336
item_1_5 0.269 0.023 11.478 0.000 0.269 0.271
item_1_6 0.325 0.026 12.299 0.000 0.325 0.327
S2 =~
item_2_1 0.299 0.023 13.004 0.000 0.299 0.309
item_2_2 0.314 0.025 12.735 0.000 0.314 0.316
item_2_3 0.314 0.023 13.631 0.000 0.314 0.319
item_2_4 0.294 0.025 11.733 0.000 0.294 0.299
item_2_5 0.282 0.023 12.229 0.000 0.282 0.288
item_2_6 0.347 0.025 14.146 0.000 0.347 0.346
S3 =~
item_3_1 0.255 0.028 9.231 0.000 0.255 0.259
item_3_2 0.263 0.026 10.130 0.000 0.263 0.260
item_3_3 0.313 0.024 13.192 0.000 0.313 0.320
item_3_4 0.277 0.027 10.172 0.000 0.277 0.282
item_3_5 0.311 0.025 12.624 0.000 0.311 0.313
item_3_6 0.324 0.024 13.317 0.000 0.324 0.322
S4 =~
item_4_1 0.308 0.024 13.038 0.000 0.308 0.310
item_4_2 0.231 0.023 10.115 0.000 0.231 0.234
item_4_3 0.339 0.029 11.736 0.000 0.339 0.337
item_4_4 0.317 0.026 12.005 0.000 0.317 0.323
item_4_5 0.357 0.023 15.345 0.000 0.357 0.356
item_4_6 0.334 0.023 14.326 0.000 0.334 0.331
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
F ~~
S1 0.000 0.000 0.000
S2 0.000 0.000 0.000
S3 0.000 0.000 0.000
S4 0.000 0.000 0.000
S1 ~~
S2 0.000 0.000 0.000
S3 0.000 0.000 0.000
S4 0.000 0.000 0.000
S2 ~~
S3 0.000 0.000 0.000
S4 0.000 0.000 0.000
S3 ~~
S4 0.000 0.000 0.000
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.item_1_1 0.302 0.016 18.849 0.000 0.302 0.295
.item_1_2 0.322 0.017 18.405 0.000 0.322 0.285
.item_1_3 0.258 0.013 19.980 0.000 0.258 0.246
.item_1_4 0.332 0.018 18.487 0.000 0.332 0.322
.item_1_5 0.231 0.013 18.404 0.000 0.231 0.234
.item_1_6 0.251 0.014 17.445 0.000 0.251 0.255
.item_2_1 0.232 0.011 20.377 0.000 0.232 0.247
.item_2_2 0.270 0.015 18.402 0.000 0.270 0.274
.item_2_3 0.233 0.012 18.731 0.000 0.233 0.241
.item_2_4 0.304 0.016 19.077 0.000 0.304 0.315
.item_2_5 0.208 0.011 19.177 0.000 0.208 0.217
.item_2_6 0.227 0.013 17.147 0.000 0.227 0.226
.item_3_1 0.300 0.016 18.764 0.000 0.300 0.309
.item_3_2 0.307 0.015 20.041 0.000 0.307 0.299
.item_3_3 0.220 0.013 17.540 0.000 0.220 0.230
.item_3_4 0.282 0.014 19.908 0.000 0.282 0.292
.item_3_5 0.231 0.013 18.380 0.000 0.231 0.234
.item_3_6 0.184 0.012 15.055 0.000 0.184 0.183
.item_4_1 0.198 0.011 17.371 0.000 0.198 0.200
.item_4_2 0.242 0.011 21.445 0.000 0.242 0.249
.item_4_3 0.283 0.016 18.195 0.000 0.283 0.279
.item_4_4 0.266 0.014 18.615 0.000 0.266 0.276
.item_4_5 0.204 0.012 17.281 0.000 0.204 0.203
.item_4_6 0.236 0.013 17.944 0.000 0.236 0.231
F 1.000 1.000 1.000
S1 1.000 1.000 1.000
S2 1.000 1.000 1.000
S3 1.000 1.000 1.000
S4 1.000 1.000 1.000
$ModelLevelIndices
ECV.F PUC Omega.F OmegaH.F ARPB
0.87250776 0.78260870 0.98438334 0.94996921 0.01564634
$FactorLevelIndices
ECV_SS ECV_SG ECV_GS Omega OmegaH H FD
F 0.8725078 0.87250776 0.8725078 0.9843833 0.9499692 0.9783633 0.9753907
S1 0.1292968 0.03159233 0.8707032 0.9410352 0.1208026 0.3847117 0.7239138
S2 0.1314340 0.03298034 0.8685660 0.9464750 0.1240935 0.3954727 0.7380738
S3 0.1164400 0.02903263 0.8835600 0.9451736 0.1092838 0.3628306 0.7176394
S4 0.1326829 0.03388694 0.8673171 0.9499120 0.1244707 0.4037519 0.7475393
$ItemLevelIndices
IECV RelParBias
item_1_1 0.8663711 0.014460658
item_1_2 0.8468204 0.017422707
item_1_3 0.9107551 0.007060984
item_1_4 0.8336930 0.018434054
item_1_5 0.9040772 0.009175636
item_1_6 0.8565822 0.014500438
item_2_1 0.8734484 0.015293462
item_2_2 0.8625154 0.018170541
item_2_3 0.8655268 0.016415857
item_2_4 0.8699025 0.016741597
item_2_5 0.8943523 0.012798106
item_2_6 0.8452077 0.019838716
item_3_1 0.9029532 0.011477546
item_3_2 0.9037996 0.011891050
item_3_3 0.8668107 0.016325216
item_3_4 0.8878542 0.014875840
item_3_5 0.8718484 0.014984120
item_3_6 0.8728099 0.013865285
item_4_1 0.8797296 0.016220156
item_4_2 0.9271263 0.009747255
item_4_3 0.8427286 0.023415343
item_4_4 0.8558483 0.020039570
item_4_5 0.8404893 0.021270054
item_4_6 0.8576274 0.021087993
lavaan 0.6-19 ended normally after 19 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 48
Number of observations 1000
Model Test User Model:
Standard Scaled
Test Statistic 2606.856 2634.837
Degrees of freedom 252 252
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.989
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 25410.561 25585.788
Degrees of freedom 276 276
P-value 0.000 0.000
Scaling correction factor 0.993
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.906 0.906
Tucker-Lewis Index (TLI) 0.897 0.897
Robust Comparative Fit Index (CFI) 0.906
Robust Tucker-Lewis Index (TLI) 0.897
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -22598.464 -22598.464
Scaling correction factor 1.008
for the MLR correction
Loglikelihood unrestricted model (H1) -21295.036 -21295.036
Scaling correction factor 0.992
for the MLR correction
Akaike (AIC) 45292.928 45292.928
Bayesian (BIC) 45528.500 45528.500
Sample-size adjusted Bayesian (SABIC) 45376.050 45376.050
Root Mean Square Error of Approximation:
RMSEA 0.097 0.097
90 Percent confidence interval - lower 0.093 0.094
90 Percent confidence interval - upper 0.100 0.101
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 1.000 1.000
Robust RMSEA 0.097
90 Percent confidence interval - lower 0.093
90 Percent confidence interval - upper 0.100
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 1.000
Standardized Root Mean Square Residual:
SRMR 0.038 0.038
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
U =~
item_1_1 0.802 0.027 30.090 0.000 0.802 0.793
item_1_2 0.841 0.029 29.228 0.000 0.841 0.792
item_1_3 0.855 0.025 34.125 0.000 0.855 0.834
item_1_4 0.778 0.028 28.042 0.000 0.778 0.766
item_1_5 0.834 0.026 31.515 0.000 0.834 0.840
item_1_6 0.805 0.026 31.484 0.000 0.805 0.811
item_2_1 0.798 0.025 32.477 0.000 0.798 0.824
item_2_2 0.800 0.026 31.199 0.000 0.800 0.806
item_2_3 0.810 0.025 32.904 0.000 0.810 0.824
item_2_4 0.772 0.026 29.501 0.000 0.772 0.785
item_2_5 0.831 0.025 33.813 0.000 0.831 0.848
item_2_6 0.828 0.027 30.893 0.000 0.828 0.825
item_3_1 0.787 0.026 30.333 0.000 0.787 0.799
item_3_2 0.817 0.026 30.837 0.000 0.817 0.806
item_3_3 0.811 0.025 33.076 0.000 0.811 0.830
item_3_4 0.790 0.026 30.175 0.000 0.790 0.804
item_3_5 0.824 0.026 31.857 0.000 0.824 0.829
item_3_6 0.859 0.024 35.097 0.000 0.859 0.856
item_4_1 0.848 0.026 32.534 0.000 0.848 0.852
item_4_2 0.831 0.026 32.529 0.000 0.831 0.843
item_4_3 0.803 0.027 29.715 0.000 0.803 0.798
item_4_4 0.789 0.025 31.592 0.000 0.789 0.803
item_4_5 0.837 0.026 32.739 0.000 0.837 0.836
item_4_6 0.838 0.026 32.324 0.000 0.838 0.829
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.item_1_1 0.380 0.018 21.714 0.000 0.380 0.372
.item_1_2 0.421 0.020 21.074 0.000 0.421 0.373
.item_1_3 0.319 0.015 21.389 0.000 0.319 0.304
.item_1_4 0.426 0.020 20.907 0.000 0.426 0.413
.item_1_5 0.291 0.013 21.724 0.000 0.291 0.295
.item_1_6 0.338 0.016 20.982 0.000 0.338 0.343
.item_2_1 0.302 0.013 23.016 0.000 0.302 0.322
.item_2_2 0.346 0.017 20.671 0.000 0.346 0.351
.item_2_3 0.311 0.014 21.805 0.000 0.311 0.321
.item_2_4 0.371 0.018 20.622 0.000 0.371 0.384
.item_2_5 0.271 0.012 22.059 0.000 0.271 0.282
.item_2_6 0.321 0.015 21.567 0.000 0.321 0.319
.item_3_1 0.351 0.018 19.437 0.000 0.351 0.361
.item_3_2 0.361 0.016 22.309 0.000 0.361 0.351
.item_3_3 0.297 0.014 20.600 0.000 0.297 0.311
.item_3_4 0.340 0.016 21.103 0.000 0.340 0.353
.item_3_5 0.308 0.014 21.947 0.000 0.308 0.312
.item_3_6 0.269 0.014 19.767 0.000 0.269 0.267
.item_4_1 0.270 0.013 20.951 0.000 0.270 0.273
.item_4_2 0.282 0.012 22.629 0.000 0.282 0.290
.item_4_3 0.369 0.019 19.555 0.000 0.369 0.364
.item_4_4 0.343 0.016 22.032 0.000 0.343 0.355
.item_4_5 0.303 0.015 19.822 0.000 0.303 0.302
.item_4_6 0.319 0.014 22.573 0.000 0.319 0.313
U 1.000 1.000 1.000
lhs op rhs mi epc sepc.lv sepc.all sepc.nox
314 item_4_1 ~~ item_4_5 105.803 0.098 0.098 0.344 0.344
283 item_3_3 ~~ item_3_6 105.581 0.097 0.097 0.344 0.344
325 item_4_5 ~~ item_4_6 94.935 0.101 0.101 0.324 0.324
298 item_3_5 ~~ item_3_6 85.588 0.089 0.089 0.309 0.309
235 item_2_5 ~~ item_2_6 84.443 0.090 0.090 0.306 0.306
322 item_4_3 ~~ item_4_6 79.879 0.101 0.101 0.295 0.295
177 item_2_1 ~~ item_2_6 79.558 0.092 0.092 0.296 0.296
208 item_2_3 ~~ item_2_6 78.026 0.092 0.092 0.293 0.293
321 item_4_3 ~~ item_4_5 76.247 0.097 0.097 0.289 0.289
313 item_4_1 ~~ item_4_4 75.223 0.088 0.088 0.288 0.288
psymetrics::compare_model_fit(
result_ideal$fit_uni,
result_ideal$fit_multi,
result_ideal$fit_bifactor
)MODEL | NOBS | ESTIMATOR | NPAR | Chi2 | Chi2_df
------------------------------------------------------------------------
result_ideal$fit_uni | 1000 | MLR | 48 | 2634.837 | 252
result_ideal$fit_multi | 1000 | MLR | 54 | 261.970 | 246
result_ideal$fit_bifactor | 1000 | MLR | 72 | 221.095 | 228
MODEL | p (Chi2) | CFI | TLI | RMSEA | RMSEA CI | SRMR
-------------------------------------------------------------------------------------
result_ideal$fit_uni | < .001 | 0.906 | 0.897 | 0.097 | [0.094, 0.101] | 0.038
result_ideal$fit_multi | 0.231 | 0.999 | 0.999 | 0.008 | [0.000, 0.016] | 0.012
result_ideal$fit_bifactor | 0.616 | 1.000 | 1.000 | 0.000 | [0.000, 0.012] | 0.009
Con una muestra suficiente, 4 factores con 6 ítems en cada factor y un buen comportamiento bifactorial.
$ModelLevelIndices
ECV.F PUC Omega.F OmegaH.F ARPB
0.70564532 0.78260870 0.97275756 0.86241389 0.03276995
$FactorLevelIndices
ECV_SS ECV_SG ECV_GS Omega OmegaH H FD
F 0.70564532 0.70564532 0.70564532 0.9727576 0.86241389 0.9721486 0.9705498
S1 0.12377861 0.03305574 0.87622139 0.9459541 0.11618284 0.3798054 0.7092911
S2 0.09359639 0.02442729 0.90640361 0.9412326 0.08600959 0.3071786 0.6467970
S3 0.12061010 0.03162232 0.87938990 0.9423015 0.11307017 0.3680375 0.6925122
S4 0.97843528 0.20524934 0.02156472 0.8939206 0.87694498 0.8925204 0.9461048
$ItemLevelIndices
IECV RelParBias
item_1_1 0.850379317 0.028620201
item_1_2 0.883049091 0.023549057
item_1_3 0.871138676 0.027768299
item_1_4 0.857136869 0.028773862
item_1_5 0.910633346 0.018337847
item_1_6 0.887794846 0.020465061
item_2_1 0.895192791 0.014109372
item_2_2 0.913106323 0.009112679
item_2_3 0.854496570 0.017244107
item_2_4 0.924350754 0.009792271
item_2_5 0.912127653 0.010912886
item_2_6 0.943746537 0.003339663
item_3_1 0.837317659 0.027392299
item_3_2 0.882737169 0.019666295
item_3_3 0.873845702 0.021457371
item_3_4 0.904316752 0.014807362
item_3_5 0.891841432 0.015901516
item_3_6 0.885129012 0.018537898
item_4_1 0.023031621 0.043132872
item_4_2 0.040442512 0.027082611
item_4_3 0.018229231 0.070660735
item_4_4 0.031037736 0.040020457
item_4_5 0.006400103 0.140046567
item_4_6 0.005574720 0.135747559
lavaan 0.6-19 ended normally after 27 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 48
Number of observations 1000
Model Test User Model:
Standard Scaled
Test Statistic 4604.696 4604.680
Degrees of freedom 252 252
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.000
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 21500.542 21446.107
Degrees of freedom 276 276
P-value 0.000 0.000
Scaling correction factor 1.003
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.795 0.794
Tucker-Lewis Index (TLI) 0.775 0.775
Robust Comparative Fit Index (CFI) 0.795
Robust Tucker-Lewis Index (TLI) 0.775
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -25548.386 -25548.386
Scaling correction factor 1.013
for the MLR correction
Loglikelihood unrestricted model (H1) -23246.038 -23246.038
Scaling correction factor 1.002
for the MLR correction
Akaike (AIC) 51192.772 51192.772
Bayesian (BIC) 51428.344 51428.344
Sample-size adjusted Bayesian (SABIC) 51275.894 51275.894
Root Mean Square Error of Approximation:
RMSEA 0.131 0.131
90 Percent confidence interval - lower 0.128 0.128
90 Percent confidence interval - upper 0.135 0.135
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 1.000 1.000
Robust RMSEA 0.131
90 Percent confidence interval - lower 0.128
90 Percent confidence interval - upper 0.135
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 1.000
Standardized Root Mean Square Residual:
SRMR 0.131 0.131
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
U =~
item_1_1 0.839 0.026 31.801 0.000 0.839 0.845
item_1_2 0.817 0.026 31.640 0.000 0.817 0.840
item_1_3 0.760 0.027 28.381 0.000 0.760 0.771
item_1_4 0.836 0.026 32.030 0.000 0.836 0.831
item_1_5 0.796 0.026 30.902 0.000 0.796 0.804
item_1_6 0.871 0.025 34.318 0.000 0.871 0.873
item_2_1 0.778 0.025 31.468 0.000 0.778 0.803
item_2_2 0.850 0.027 31.886 0.000 0.850 0.852
item_2_3 0.861 0.026 32.849 0.000 0.861 0.844
item_2_4 0.760 0.026 29.659 0.000 0.760 0.784
item_2_5 0.792 0.026 29.977 0.000 0.792 0.781
item_2_6 0.849 0.025 33.720 0.000 0.849 0.859
item_3_1 0.787 0.027 29.055 0.000 0.787 0.788
item_3_2 0.798 0.027 29.210 0.000 0.798 0.806
item_3_3 0.820 0.025 32.629 0.000 0.820 0.821
item_3_4 0.791 0.026 30.442 0.000 0.791 0.798
item_3_5 0.823 0.025 33.135 0.000 0.823 0.855
item_3_6 0.824 0.024 33.830 0.000 0.824 0.837
item_4_1 0.119 0.034 3.495 0.000 0.119 0.116
item_4_2 0.173 0.034 5.120 0.000 0.173 0.170
item_4_3 0.103 0.034 3.059 0.002 0.103 0.102
item_4_4 0.154 0.036 4.334 0.000 0.154 0.147
item_4_5 0.071 0.034 2.074 0.038 0.071 0.071
item_4_6 0.064 0.033 1.925 0.054 0.064 0.063
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.item_1_1 0.282 0.013 21.970 0.000 0.282 0.286
.item_1_2 0.278 0.013 21.137 0.000 0.278 0.294
.item_1_3 0.395 0.019 20.939 0.000 0.395 0.406
.item_1_4 0.313 0.015 21.094 0.000 0.313 0.309
.item_1_5 0.346 0.017 20.607 0.000 0.346 0.353
.item_1_6 0.238 0.012 20.299 0.000 0.238 0.239
.item_2_1 0.333 0.017 19.125 0.000 0.333 0.355
.item_2_2 0.272 0.014 20.147 0.000 0.272 0.274
.item_2_3 0.299 0.014 21.626 0.000 0.299 0.288
.item_2_4 0.362 0.017 21.138 0.000 0.362 0.385
.item_2_5 0.403 0.018 22.085 0.000 0.403 0.391
.item_2_6 0.257 0.012 21.025 0.000 0.257 0.263
.item_3_1 0.377 0.019 19.757 0.000 0.377 0.378
.item_3_2 0.343 0.016 22.014 0.000 0.343 0.350
.item_3_3 0.326 0.015 21.486 0.000 0.326 0.327
.item_3_4 0.357 0.017 21.207 0.000 0.357 0.363
.item_3_5 0.250 0.012 20.702 0.000 0.250 0.270
.item_3_6 0.291 0.014 21.470 0.000 0.291 0.300
.item_4_1 1.039 0.047 21.938 0.000 1.039 0.987
.item_4_2 1.010 0.045 22.266 0.000 1.010 0.971
.item_4_3 1.011 0.046 22.108 0.000 1.011 0.990
.item_4_4 1.067 0.046 23.140 0.000 1.067 0.978
.item_4_5 0.999 0.045 22.085 0.000 0.999 0.995
.item_4_6 1.024 0.044 23.372 0.000 1.024 0.996
U 1.000 1.000 1.000
MODEL | NOBS | ESTIMATOR | NPAR | Chi2 | Chi2_df
---------------------------------------------------------------------
result_1f$fit_uni | 1000 | MLR | 48 | 4604.680 | 252
result_1f$fit_multi | 1000 | MLR | 54 | 284.945 | 246
result_1f$fit_bifactor | 1000 | MLR | 72 | 245.710 | 228
MODEL | p (Chi2) | CFI | TLI | RMSEA | RMSEA CI | SRMR
----------------------------------------------------------------------------------
result_1f$fit_uni | < .001 | 0.794 | 0.775 | 0.131 | [0.128, 0.135] | 0.131
result_1f$fit_multi | 0.045 | 0.998 | 0.998 | 0.013 | [0.002, 0.019] | 0.022
result_1f$fit_bifactor | 0.201 | 0.999 | 0.999 | 0.009 | [0.000, 0.016] | 0.015